skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shadid, John N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work proposes a unified hp-adaptivity framework for hybridized discontinuous Galerkin (HDG) method for a large class of partial differential equations (PDEs) of Friedrichs’ type. In particular, we present unified hp-HDG formulations for abstract one-field and two-field structures and prove their well-posedness. In order to handle non-conforming interfaces we simply take advantage of HDG built-in mortar structures. With split-type mortars and the approximation space of trace, a numerical flux can be derived via Godunov approach and be naturally employed without any additional treatment. As a consequence, the proposed formulations are parameter-free. We perform several numerical experiments for time-independent and linear PDEs including elliptic, hyperbolic, and mixed-type to verify the proposed unified hp-formulations and demonstrate the effectiveness of hp-adaptation. Two adaptivity criteria are considered: one is based on a simple and fast error indicator, while the other is rigorous but more expensive using an adjoint-based error estimate. The numerical results show that these two approaches are comparable in terms of convergence rate even for problems with strong gradients, discontinuities, and singularities. 
    more » « less
  2. null (Ed.)